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Abstract-The state equation governing the anisotropic response of monoclinic linear elastic material
is deduced, An exact three-dimensional (3-D) elasticity solution is performed for simply-supported
thick orthotropic rectangular plates subjected to arbitrary loading. For the first time, a sixth-order
differential equation governing the transverse displacement is obtained and various expressions of the
solution are provided, The results can be used to the plate of any kind of reduced material properties
for example transversely isotropic or isotropic plates. (9 1997 Elsevier Science Ltd

INTRODUCTION

Plate structures are usually analyzed by employing approximate two-dimensional (2-D)
theories based on either the classical Kirchhoff~Love hypothesis of straight inextensional
normals, or refinements to it to include the effects of transverse shear deformation and
normal stretch. However, to assess the validity of these approximate theories, rigorous
analytical solutions based on the exact three-dimensional (3-D) theory of elasticity should
be obtained for some plate problems, for example anisotropic plate and thick plate. Such
elasticity solutions are very valuable, especially for laminated composite structures in which
the inherent anisotropic inhomogeneity lead to a complicated coupling effect, and to abrupt
variations of the stresses at the interface of the laminate.

There are relatively few exact solutions to the full equations of 3-D elasticity theory as
applied to the deformation of anisotropic plates. The first problem to be considered was that
of cylindrical bending of a simply-supported orthotropic strip under sinusoidal transverse load
(Pagano, 1969). Later investigations considered the cases of finite rectangular plates (Pagano,
1970). The problem of bending, vibration and buckling of simply supported thick orthotropic
rectangular plates and laminates was solved by Srinivas and Rao (1970). In a recent devel­
opment, by adapting work by Iyengar and Pandya (1984) that used a state space transfer
matrix method, Fan and Ye (I 990a, b) have derived solutions in the form of double Fourier
series, appropriate for rectangular plates. Rogers et ai. (1992) have provided the solution
process for anisotropic elliptical plate of moderate thickness, but no numerical results were
available. They also gave an exact 3-D solution for the deformation and stress distribution in
a semi-infinite strip clamped along its two edges (Rogers et ai., 1995). Nevertheless, these exact
solutions have enabled us to quantify the errors involved in various plate theories.

However, two more questions which relate with the application of the aforementioned
solutions exist besides the limitation of geometric and boundary conditions. One is the
solution given by Fan and Ye (I990a) and Srinivas and Rao (1970), which cannot be used
for the plate problem with reduced material properties. For example, transversely isotropic
and isotropic materials because it is possible that the eigenvalue of eigen eqn (13) has
repeated roots. A much more complicated solution process should be outlined when eqn
(13) has repeated roots. Another question is about the value of H in formula (16). Pagano
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(1970) said it is possible that the situation H > 0 cannot exist in real materials, although
the heavy algebra involved would render the proof of this statement extremely difficult.
Thus, this is only the case where H < 0 is considered in that paper (Pagano, 1970). This
opinion has considerable influence on the following similar investigations performed by
other researchers. More than two decades passed and still some authors hold such kinds of
ideas (Bhaskar and Varadan, 1993). In fact, Pagano also pointed out that the sign of H
must be investigated for the specific material and geometric properties in his paper (Pagano,
1970). Our investigation of this paper demonstrates that H can be any real number (positive,
negative or zero) depending on the combination of the material and geometric properties
and value of (, '1 shown in eqn (11). In order to clarify the statement above and quantify
the errors analysis compared with appropriate plate theories, we shall further investigate
these problems, which are very important for the programme being developed in the future,
based on so-called exact solution.

NOTATION AND STATE EQUATION

To generalize the illustration, we consider the boundary value problem of3-D elasticity.
A rectangular Cartesian coordinate x, y, z is used. The constitutive law of the material for
monoclinic linear elasticity can be written as

ax CII Cl2 Cl3 0 0 C I6 Bx
ay Cl2 Cn C23 0 0 C 26 By

az CI3 C23 C33 0 0 C36 Bz

0 0 0 0
(1)

ryz C44 C45 )\'z

!zx 0 0 0 C45 C55 0 )'zx

rxv C I6 C26 C36 0 0 C66 )'xy

The strain-displacement relations and the equilibrium equations are

Bx = oU/ox, By = oV/oy, Bz = oW/oz, )'xy = oU/oy+oV/ox,

)'yz = oV/oz+oW/oy, )'zx = oW/ox+ oU/oz

and

oax orxy or" 02 U
-+-+-=p-
ox oy OZ ot2

(2)

(3)

In the above equations, U, V and W denote the displacements along the coordinate
axes x, y and z, respectively; p and cij are the density coefficients of the material under
consideration. In general, the material behaviour is described by 13 independent moduli.
We also note that if the material is orthotropic or transversely isotropic with a symmetry
axis which makes an angle ¢ with the x-axis, then its stress-strain representation takes the
form (1), but the 13 moduli are now all related to ¢ and to the nine or five independent
moduli of the respective anisotropy.

Let X = rm Y = ryn Z = an ex = %x, f3 = %y, ¢2 = p02/0r, and eliminate membrane
stresses an ay and r xy from eqns (1)-(3), the following state equation can be obtained.



Exact elasticity solution for anisotropic thick rectangular plates

u u
V V

0 Z
= [: ~J

z
-oz X X

y y

w w

The eliminated stress components can be written as
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(4)

where 0 is a (3 x 3), and

j
(Jxj [C2r:t.+C7f3 C7r:t.+C3f3

(Jy = C3r:t.+Csf3 C8r:t.+C4f3

I xy C7r:t.+C6f3 C6r:t.+C8f3

(5)

-13

-r:t.]-13 ,
~2

[

~2 -C2':1. 2 - 2C7r:t.f3- C6f32

B = -C7r:t. 2-(C3 +C6)r:t.f3- CSf32

Cj r:t.+C9f3

- C7r:t. 2 - (C3 +C6)r:t.f3 - C8f3 2

~2 _ C6r:t. 2 - 2csr:t.f3 - C4f32

C9r:t.+Csf3

Cl r:t.+ C9f3]

C9':1.+CSf3 '

CIO

C; (i = 1,2, ... , 10) and all' all> a22 are all the constants related to the 13 stiffness coefficients
of the material (Appendix A).

SIMPLY-SUPPORTED ORTHOTROPIC RECTANGULAR PLATES

For an orthotropic body, the state equation (4) can be simplified as follows:

u 0 0 0 all 0 -r:t. U

V 0 0 0 0 an -13 V

0 Z 0 0 0 -r:t. -13 ~2 z
- (6)
OZ X ~2_C2r:t.2_C6f32 -(C3+ C6)r:t.f3 Clr:t. 0 0 0 X

Y -(C3+ C6)r:t.f3 ~2 -C6'':I. 2 -C4f32 csf3 0 0 0 y

W Clr:t. ('513 CIO 0 0 0 W

Similarly, n[e"
c3f3

=;:]l~(Jy = C3r:t. C4f3 (7)

I xy C6f3 C6r:t.

Equations (6) and (7) are exactly the formulas (1) and (2) in the Fan and Ye's paper
(1990a). The boundary conditions may be specified as (Fig. 1):
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on x = 0 and a; ax = 0, W = 0 and V = 0,

on Y = 0 and b; ay = 0, W = 0 and U = o.

1

U) [Umn(z)cos(mnx/a)Sin(nnY/b)]

V = m~1 ntl Vmn(z) sin(mnx/a) cos(nny/b) eiwnm
'.

W Wmn(z) sin(mnx/a) sin(nny/b)

(8)

(9)

The substitution of eqn (9) and eqn (6) gives

1

Xl lXmn(z) cos(mnx/a) Sin(nnY/b)]
Y = m~l ntl Ymn(z) sin(mnx/a) cos(nny/b) eiWmnl.

Z Zmn(Z) sin(mnx/a) sin(nny/b)

(10)

From eqns (7), (9) and (10), it can be noted that the boundary conditions of (8) are satisfied.
Substituting eqns (9) and (10) into state equation (6) gives the following results for

each combination of m and n :

Umn

Vmn

d Zmn
-

dz Xmn

Ymn

Wmn

where

o
o
o

- pw 2 +C2(2 +C6'12

(c3+c6K'1

-CI(

_pw2 +C6(2 +C4'12

-Cs'1

0 all

0 0

0 (

CI( 0

Cs'1 0

CIO 0

0 -(

an -'1

'1 _pw2

0 0

0 0

0 0

, (11)

( = mn/a, '1 = nn/b, w = Wmn-

From eqn (II), a sixth-order differential equation governing any of the six components
(Umm Vmm WmmXmm YmmZmn) can be obtained. For example, the equation governing the
transverse displacement Wmn is

(12)

Ao, Bo and Co can be determined from the coefficient matrix of eqn (11) (Appendix B). If
Wmn in eqn (12) is known, all other stress and displacement components
(Umm . .. ,Xmm ... ,etc.) can easily be determined from eqns (11) and (7). We note that only
a fourth-order differential equation governing the transverse displacement is available in
classical plate theory. So far, the sixth-order differential equation governing transverse
displacement is first given for 3-D (orthotropic) plate problem (eqn (12». It is also true for



Exact elasticity solution for anisotropic thick rectangular plates 751

the monoclinic material plate with any boundary conditions, the only difference is that Ao,

Eo and Co are functions of operators ii, f3 and elastic coefficients cu.

SOLUTION

Assuming the solution of eqn (12) in the form Wmn = keAz (k is an arbitrary constant),
the characteristic equation of eqn (12) is given by

Equation (13) can be transformed into a third-degree equation as

'/+py+q = 0,

where y = },2-Ao/3, and

p = Eo - A~/3, q = Co + A o(2A~/9 - Eo)/3.

The nature of the solution of (14) is controlled by the sign of the quantity H, where

(13)

(14)

(15)

(16)

Pagano (1970) only considered the case with H < O. It is incomplete. Numerical results
show that H can be either positive or negative even for the plate with the same material
and geometric properties. For transversely isotropic or isotropic material, H can be zero.
Thus, various expressions of the solution for eqn (12), depending on the value of H, will
be given here to complete the solution we discussed.

(1) H > O. Making notationfl = 3)-q/2+JHJ2 = 3)-q/2-JH (obviously fl > !z),
the solution will be

Wmn = k 1sh/1, z+ k 2ch/11 Z+Sh(/12 cos(¢/2)z)[k3 sin(/12 sin(¢/2)z) +k4 COS(/12 sin(¢/2)z)]

+ Ch(/12 cos(¢!2)z)[ks sin(/12 sin(¢/2)z) + kt> COS(/12 sin(¢/2)z)], (/1 + f2 - A o/3 > 0). (17)

Wmn = k 1 sin/1,z+k2COS/1,Z+Sh(/12 cos(¢/2)z)[k3 sin(/12 sin(¢/2)z)+k4 COS(/12 sin(¢/2)z)]

+ Ch(/12 cos(¢/2)z)[ks sin(/12 sin(¢/2)z) +k6 COS(/12 sin(¢/2)z)], (/, + f2 - A o/3 < 0). (18)

Wmn = k, +k2z+sh(/12 cos(¢/2)z)[k3 sin(/12 sin(¢/2)z)+k4 COS(/12 sin(¢/2)z)]

+ Ch(/12 cos(¢/2)z)[ks sin(/12 sin(¢/2)z) + kt> COS(/12 sin(¢/2)z)], (/1 + f2 - A o/3 = 0). (19)

j
8 (Ao/3 +fl 12 +f2/2 < 0)

fl(/, -f2)
¢= n-8 (A o/3+f,/2+f2/2>0) and 8=arctglf,+f2+2Ao13I' (0<8<nI2).

nl2 (A o/3 +f, 12 +f2/2 = 0)

(2) H < O. Making notation

h. = 2) -pI3cos«2n-¢)/3)-Ao/3, 14 = 2) -p/3cos«2n+¢)-Ao/3,
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(20)

U3 < 0,14 < 0). (21)

(22)

(23)

where III = J2J -pI3cos(¢/3)-Ao/3, 112 = JIM, 113 =.Jill and

1

8 (q < 0) IU
2y -H

¢= n-8 (q>O); 8=arctg Iql '
nl2 (q = 0)

(0 < 8 < nI2).

(3) H = O. Making notationfs = -2..Jifi-Ao/3,f6 = 2..Jifi-Ao/3, the solution will be

(25)

Us > 0,16 > 0). (26)

Us < 0,16 > 0). (27)

(28)

Wmn = kIShIl3Z+k2ChIl3Z+k3Z 'shIl3Z+k4 z' chIl3Z+ksZ2. shIl3z+k6 z 2 . chll3Z, (q = 0),

(30)

where III = JIM, 112 = JThI and 113 = J -Ao/3.
From formulas (17)-(30), there are 14 kinds of solutions for eqn (12), depending on

the sign of H. Of course, not all solutions will be applied for a special problem. Perhaps
only one or several solutions exist. Moreover, the solutions provided here can be applied
to the transversely isotropic and isotropic plates because it is possible that repeated roots
will occur in both cases. In fact, formula (30) is the solution with three repeated pairs of
roots in eqn (12), and is suitable to the isotropic plate (Pagano, 1970).
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NUMERICAL RESULTS

Six integral constants k; (i = 1, 2, ... , 6) in the solution of eqn (12) can be determined
according to the force vectors applied to the external plate plane (z = 0, h). For example,
if the upper and the lower surfaces of a rectangular plate are subjected to arbitrary normal
load qo(x,y) and ql(X,y), respectively, the boundary conditions can be written as

Because Xmn(z), Ymn(z) and ZmnCz) can be expressed by Wmn and its derivative from
eqn (11), the six integral constants k, (i = 1,2, ... ,6) in Wmn can be uniquely determined by
eqn (31).

Example I
A rectangular orthotropic thick plate with simply-supported edges (Fig. I) is subjected

to normal load -0.5qo sin(nxja)) sin(nyjb) on its upper surface (z = 0) and 0.5qo sin(nxja)
sin(nyjb) on its lower surface (z = h), i.e. an antisymmetric loading about z = hj2 is applied.
The boundary conditions are

j
X(O») IXII (O)l
YeO) = Y1 1 (0) =
Z(O) ZII (0)

and
rX(h») JXII (h») 10 )
Y(h) = Y11(h) = 0 .

[Z(h) 2 11 (h) qoj2

(32)

Numerical calculations are performed with the following values

E, = IOEY' Ey = Ez , Gn = Gxz = 0.6Ez ,

Grz = 0.5Ez , JiXl' = Jixz = Jiyz = 0.25, a = b. (33)

It can easily be verified from eqns (15), (16) and Appendix A that H> 0

x

z
Fig. I. Coordinate system and plate dimensions.
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Table 1. Variations of maximum membrane stress components across thickness

Theories Ambartsumyan Present three-dimensional solution

<Ix/qo (JI'/qo ~xy/q" <Ix/qo <I,/q" ~x,/q"
x = a/2, x ~ a12, x = 0, x = a/2, x = a12, x = 0,

h/a z/h y = b/2 y = bl2 y=o y = bl2 y = b/2 y=o

0.0 -11.6390 -1.9457 1.2314 -11.5818 -1.9394 1.5732
0.1 -8.3860 -1.5195 0.8598 -8.3721 -1.5157 1.1858
0.2 -5.7498 -1.1180 0.5717 -5.7838 -1.1162 0.8487

0.2 0.3 -3.5762 -0.7350 0.3463 -3.6291 -0.7345 0.5470
0.4 -1.7110 -0.3644 0.1627 -1.7482 -0.3644 0.2680
0.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0 -5.4810 -1.1206 0.4688 - 5.4148 -1.1152 0.8135
0.1 - 3.5080 -0.8547 0.2488 - 3.4824 -0.8484 0.5758

0.3 0.2 -2.1196 -0.6166 0.1129 - 2.1686 -0.6117 0.3916
0.3 -1.1695 -0.3995 0.0402 - 1.2521 -0.3964 0.2431
0.4 -0.5117 -0.1963 0.0096 -0.5713 -0.1948 0.1164
0.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0 - 2.4258 -0.6136 0.0298 -2.3629 -0.6165 0.3845
0.1 -1.1519 -0.4405 -0.1043 -1.0964 -0.4309 0.2251

0.5 0.2 -0.4039 -0.3010 -0.1530 -0.4746 -0.2894 0.1290
0.3 -0.0501 -0.1866 -0.1376 -0.1849 -0.1778 0.0695
0.4 0.0407 -0.0891 -0.0795 -0.0589 -0.0845 0.0302
0.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 2. Variations of maximum displacement components across thickness

Theories Ambartsumyan Present three-dimensional solution

U'E,/(q"h) V' Ej(qoh) W' Ej(q"h) U' E,/(q"h) V' E)(qoh) W' Ej(qoh)
x = 0, x = a/2, x = a12, x = 0, x = a/2, x = a/2,

h/a z/h y = bl2 y=o y = b/2 y = b/2 y=o y = bl2

0.0 1.7551 2.4346 8.8725 1.7463 2.4268 8.8233
0.1 1.2554 1.8986 8.8725 1.2534 1.8921 8.8422
0.2 0.8549 1.3930 8.8725 0.8605 1.3906 8.8493

0.2 0.3 0.5787 0.9145 8.8725 0.5373 0.9136 8.8503
0.4 0.2519 0.4530 8.8725 0.2580 0.4528 8.8494
0.5 0.0000 0.0000 8.8725 0.0000 0.0000 8.8488

0.0 0.5386 0.9110 2.5256 0.5317 0.9070 2.5505
0.1 0.3370 0.6886 2.5256 0.3346 0.6837 2.5371

0.3 0.2 0.1980 0.4930 2.5256 0.2036 0.4889 2.5191
0.3 0.1060 0.3175 2.5256 0.1151 0.3146 2.5027
0.4 0.0452 0.1554 2.5256 0.0517 0.1541 2.4914
0.5 0.0000 0.0000 2.5256 0.0000 0.0000 2.4875

0.0 0.1367 0.2725 0.6211 0.1327 0.2753 0.6887
0.1 0.0588 0.1870 0.6211 0.0556 0.1833 0.6572

0.5 0.2 0.0146 0.1221 0.6211 0.0197 0.1172 0.6259
0.3 -0.0043 0.0728 0.6211 0.0048 0.0689 0.6006
0.4 -0.0064 0.0338 0.6211 0.0003 0.0318 0.5845
0.5 0.0000 0.0000 0.6211 0.0000 0.0000 0.5789

(H= 1385.I(nla)12) andf}+h-Ao/3>0. Hence, the solution expression (17) exists.
Because it is an antisymmetric structure, Tables I and 2 only give stress and displacement
components of half the thickness.

It is seen that most maximum stress and displacement components between Ambart­
sumyan theory (1970) and 3-D elasticity agree well when hla is small. However, the
Ambartsumyan theory cannot give a correct prediction for shear stress ''Y' The discrepancy
increases with the increasing of ratio hia. When hia equals 0.5, the stresses and displacements
given by Ambartsumyan theory are incredible (even the sign of some values has changed)!



Table 3. Calculation values of H based on the material properties of formula (33)

m I 3 5 7 9 II 13
n H [(lOnja)t2]

I 104 x 10-9 -3.2xlO-' -0.029 -1.854 -39.526 ~4.5 x 102 ~3A X 103

3 lAx 10- 7 704 x 10-' 0.052 0.132 -16.753 -2.9 x 102 -2.5 X 103

5 5.0 X 10-6 4.8 X 10-' 0.338 5.866 41.704 1.0 x 102 -5.9xI02

7 1.2 X 10-4 0.020 1.127 19.178 1.6 x 102 8.5 X 102 2.9 X 103

9 1.8 X 10- 3 0.074 3.006 46.680 3.9 x 102 2.2 X 10' 8.8 X 10'

15

-1.9xl~

-1.5xl~

-~7xl~

5.8xl~

27xl~

17

-8.5 X 10'
-7.3xI04

-4.7 X 10'
-2.6 X 103

6.6 X 10'

19

-3.3xIO'
-2.9xIO'
-2.lxIO'
-8.2 x 10'

1.1 X 10'

tTl

"'"~
'"Pi"
~g:
'<

'"o
[
o
i='

0'...,

'"i='
~.
...,
o
'0
(:;.

e:
(')

~...,
il
p;-
i='

""'"Pi"...,
'0
[
~

-..J
VI
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13

- - - - - - - - - Ambansumyan Theory

zlh
................ Reissner Theory

Present Solution
Fig. 2. Maximum transverse displacement across thickness of the plate «hla) = 0.2) loaded on its

upper surface (z = 0) by a uniform normal loading qQ'

Example 2
All elastic constants and geometric properties are the same as that of Example 1. The

plate is only loaded by a uniform loading qo on its upper plane (z = 0). Here we list some
values of H and find that either positive or negative sign of H is possible depending on m
and n (Table 3). The corresponding solutions are, respectively, formulas (17) (H> 0 and
J;+f2-AO/3 > 0) and (20) (H < 0 andf3 > O,~ > 0).

The summation result of 100 terms of Fourier series about x and y variables is
calculated (m, n = 1,3, ... ,19). A good convergency is guaranteed compared with the result
of Fan and Ye (1990a). The maximum transverse displacement Wmax across thickness is
shown in Fig. 2. It is seen that maximum transverse displacement Wmax changes a little
across the thickness. It is more reasonable than that given by the Ambartsumyan theory
(1970) and Reissner theory (1945). Moreover, it is often considered that the effect of various
plate assumptions is to increase the stiffness of the structure and, therefore, yield lower
deflections (Srinivas and Rao, 1970). However, a comparison in Fig. 2 does not support
such an opinion especially for an anisotropic plate.

CONCLUDING REMARKS

The main contributions in this paper are:

(1) A state equation of 3-D elasticity of monoclinic linear elastic body is deduced.
(2) A sixth-order differential equation governing transverse displacement W, compared

with the fourth-order one in classical plate theory, is given for the first time.
(3) Various possible solutions for simply-supported orthotropic rectangular plate are

provided, which can be applied to the transversely isotropic and isotropic cases.
(4) Numerical results demonstrate that H in formula (16) can be any real number. The

sign of H, which determines the nature of the solution, depends on the combination of
material, geometric and loading properties in a practical problem.

(5) Some remarks on the difference in results between several plate theories and exact
3-D theory are also given.

Acknowledgements-The help provided by Mrs C. van der Wouden during the preparation of this manuscript was
very much appreciated.
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APPENDIX A

Elastic constants in state equation (4)

where ci/ (i,j = 1,2, ... ,6) are stiffness coefficients of monoclinic material shown in eqn (I).
For orthotropic material CI6 = C26 = C16 = C45 = 0, thus, C7 = CH = C9 = all = O. Cii has a relation with engin­

eering elastic stiffness coefficients as follows:

C II = E,(I-/l,.,/l".)/Q, C22 = E,.(I-/l,,/l,,)/Q, Cll = EAI-/l,../ln)/Q,

CI' = E,(Jl,.,+/l,,/l,.J/Q, Cil = E,(/l"+/ln·/l,,.)/Q, c" = E,.(/l".+/l"./l,,)/Q,

The subscripts of E and G are the Young's modulus and shear modulus at given directions. /l". is Poisson's ratio
which characterizes the contraction (expansion) in the direction of the y-axis during tension (compression) in the
direction of the x-axis, and so forth.

APPENDIX B

Coefficients in the governing equation (12)
Taking notation ( = mn/a, 11 = nn!b and

b, = (-c, +clo!a,,)I1.
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then, Ao, Bo and Co will be
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where p is the density of the material. The frequency of harmonic oscillations OJm" is shown in eqn (9). For static
problem, OJm" = O.


